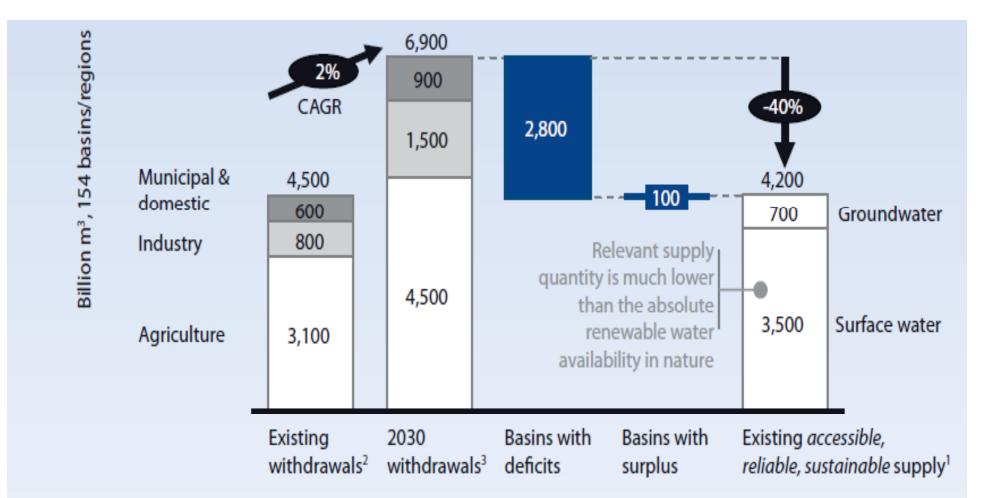


The Bengal Chamber of Commerce & Industry

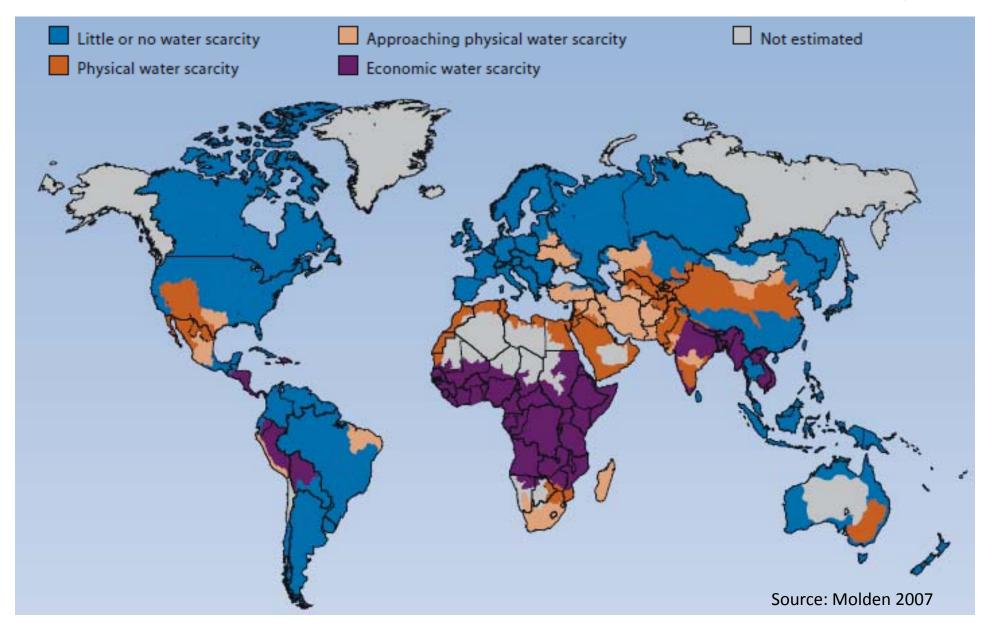
Environment and Energy Conclave 31st August 2012 Kolkata

Resourceful Water

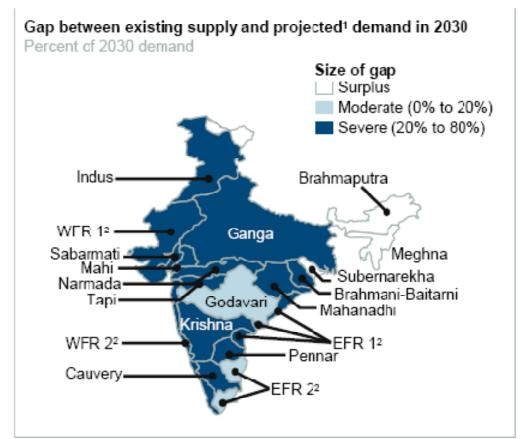
From Water Management to Resource Management: Relation Between Water, Energy & Waste

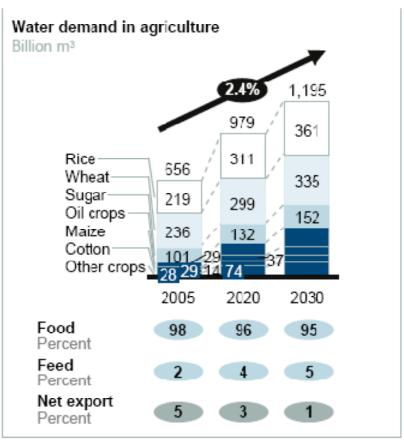

- 1. Water: Key Issues
- 2. Water, Energy & Sanitation
- 3. Water Management in a Green Economy
- 4. Benefits of Investing in Water
- 5. Enabling Conditions

- 1. Water: Key Issues
- 2. Water, Energy & Sanitation
- 3. Water Management in a Green Economy
- 4. Benefits of Investing in Water
- 5. Enabling Conditions


Global Water Use: Widening Demand-Supply Gap

- 1 Existing supply which can be provided at 90% reliability, based on historical hydrology and infrastructure investments scheduled through 2010; net of environmental requirements
- 2 Based on 2010 agricultural production analyses from IFPRI
- 3 Based on GDP, population projections and agricultural production projections from IFPRI; considers no water productivity gains between 2005-2030




Physical Scarcity & Economic Scarcity

Forecast Demand-Supply Gap in India

¹ The unconstrained projection of water requirements under a static policy regime and at existing levels of productivity and efficiency

SOURCE: 2030 Water Resources Group

² WFR = western-flowing coastal rivers; EFR = eastern-flowing coastal rivers

Causes of Water Scarcity

Population increase

Increased living standards

Over-exploitation of water sources

Water pollution

Ecosystem degradation

Significance of Ecosystems for Supply

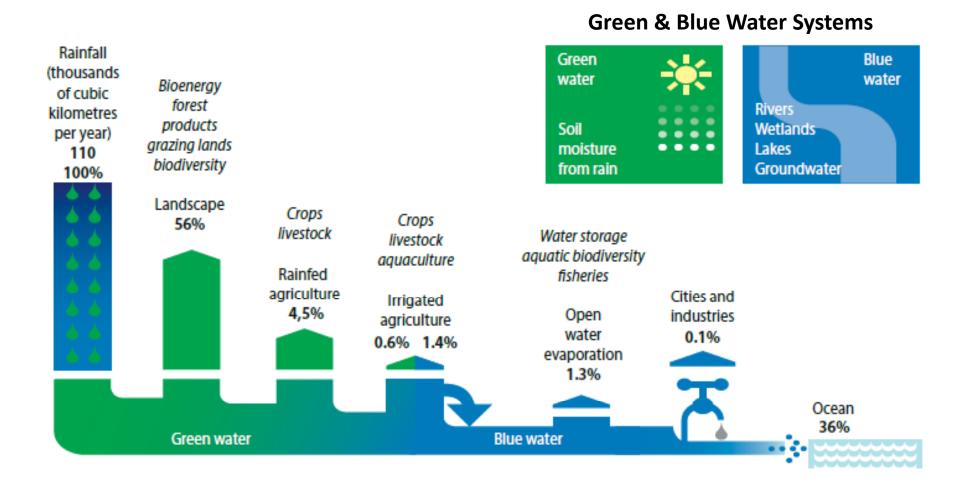


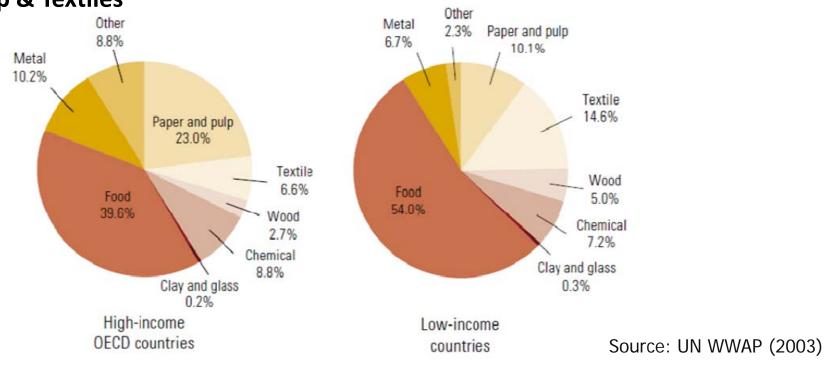
Figure 1: Green water refers to rainwater stored in the soil or on vegetation, which cannot be diverted to a different use. Blue water is surface and groundwater, which can be stored and diverted for a specific purpose

Source: UNEP, Towards a Green Economy, 2011

- 1. Water: Key Issues
- 2. Water, Energy & Sanitation
- 3. Water Management in a Green Economy
- 4. Benefits of Investing in Water
- 5. Enabling Conditions

Interdependence: Water & Energy

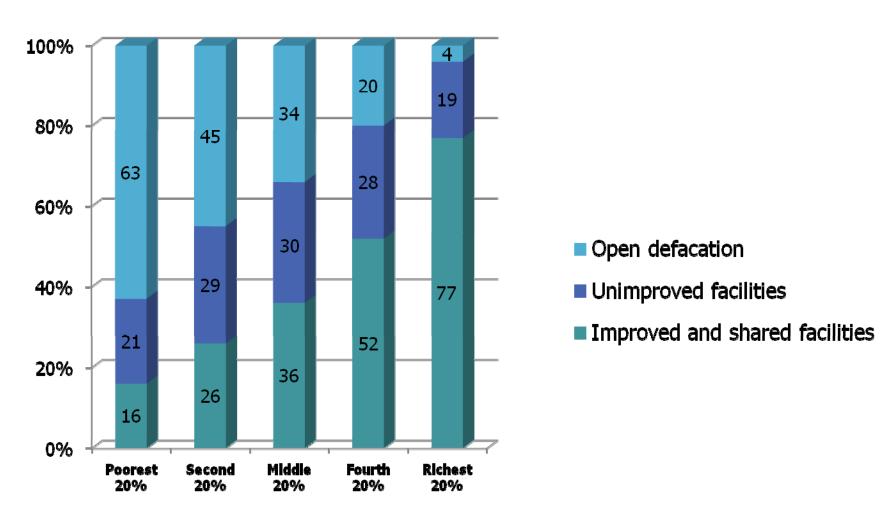
- Water plays an important role in energy generation
 - 40% of industrial water in the U.S., and 31% in China (fcst 2030) used for power station cooling


- Water Supply & Sanitation are high energy consumers:
 - California's water sector consumes 19% of its electricity and 30% of its natural gas

Water Impacts of Industrial Waste

- Heavy metals, solvents, toxic sludge, etc, dumped in water exceed 300 million tonnes per year
- Over 70% of industrial wastes still not being treated before discharge into water bodies in developing countries

Organic Water Pollutants contributed significantly by Food, Metals, Paper&
 Pulp & Textiles


Interdependence: Water & Sanitation

- Globally 2.6 billion people lack access to improved sanitation services
- MDGs: Halve % of people without access to improved sanitation services from 46% to 25% (1.7 billion) by 2015...
- Annual economic impact of inadequate sanitation is significant for countries:
 - US\$ 6.3 billion in Indonesia
 - US\$ 1.4 billion in the Philippines

Sanitation & Poverty

Sanitation by wealth quintile, sub-Saharan Africa (2005/2008)

Source: UN MDGs Report (2010)

- 1. Water: Key Issues
- 2. Water, Energy & Sanitation
- 3. Water Management in a Green Economy
- 4. Benefits of Investing in Water
- 5. Enabling Conditions

Avenues for Water Management

Investment in *Ecological* Infrastructure

Payments for Ecosystem Services

Investment in sanitation & drinking water supply

Investment in small, local, water-supply systems

Accessing new / non-traditional water sources

Producing more food and energy with less water

Case Study (TEEB) Hiware Baazar: poverty alleviation via watershed management

- Watershed development implemented under Maharashtra State Government's Adarsh Gaon Yojana Program.
- Implementation of Employment Generation Scheme for ecological regeneration led to an increase in irrigated area from 70 ha (1993) to 260 ha (2003).
- Water budgeting gives priority to drinking water, after which 70% allocated to agriculture & 30% set aside for future use

Effective

Management of

Resources

 73% reduction in poverty, due to profits from dairy and cash crops

Poverty Alleviation

Case Study: Upstream Agricultural Water Use

Vittel Mineral Water, France

 Farmers are paid EUR 200 / ha / year, to cover 5 year transition period to reduce nutrients, soil erosion, etc. to prevent nitrate contamination

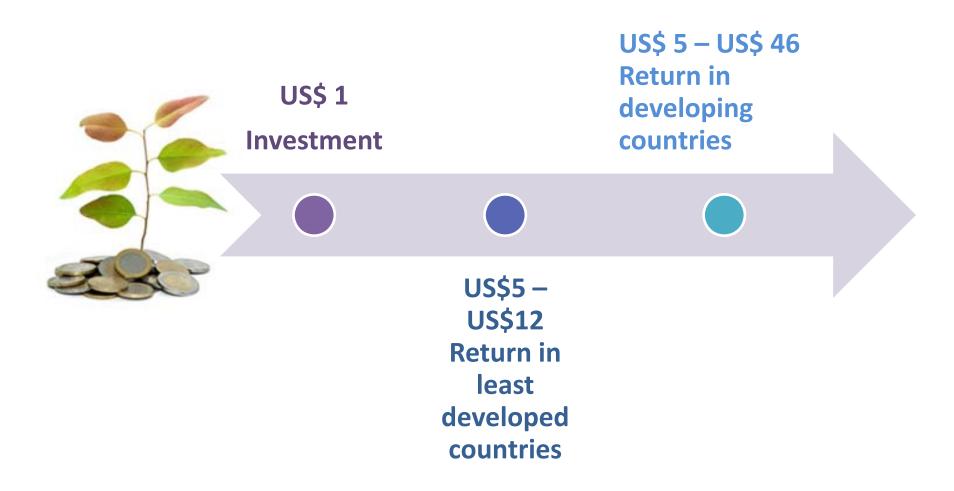
Source: Perrot-Maître 2006; Wunder & Wertz-Kanounnikoff 2009

Case Study: Poverty & Water Access

Western Jakarta

- 37% of people lack access to reliable water supply
- Poor people pay upto 50 times more than those with access to municipal water

 Solution: Set up 'Community-Managed' Water Meters for slums where the community commits to pay for supply, and collects from dwellings based on shared use


Source: Fournier and others (2010)

- 1. Water: Key Issues
- 2. Water, Energy & Sanitation
- 3. Water Management in Green Economy
- 4. Benefits of Investing in Water
- 5. Enabling Conditions

Economic Benefits of Investing in Water Supply & Sanitation

Source: Hutton, Haller & Bartram 2007

Socio-Economic Benefits of Water Supply & Sanitation

Increase in Drinking Water

 1% increase in use of unprotected water sources is directly linked with 0.16% increase in child mortality

Prevent instead of Treating

 Health costs of water-borne disease can be prevented by spending less on sanitation (eg: Peru, 1991 Cholera epideic)

Attainment of MDGs

 322 million extra working days/year as people would fall sick less

Success Stories: South Africa

Differential Pricing for "Public Good"

In 1996, set up the policy that provides a basic amount of water to all people free of charge.

Proportion of the population without access dropped from 33% to 8% (Muller, 2010)

Payments for Ecosystem Restoration

Profile: 300 projects all nine province/ year

Jobs/Training: Appox. 20,000 people

Equity: Recruited from most marginalised sector and 52% are

women

Cost: EUR 200-700/hectare while benefits estimated

47,000/hectare

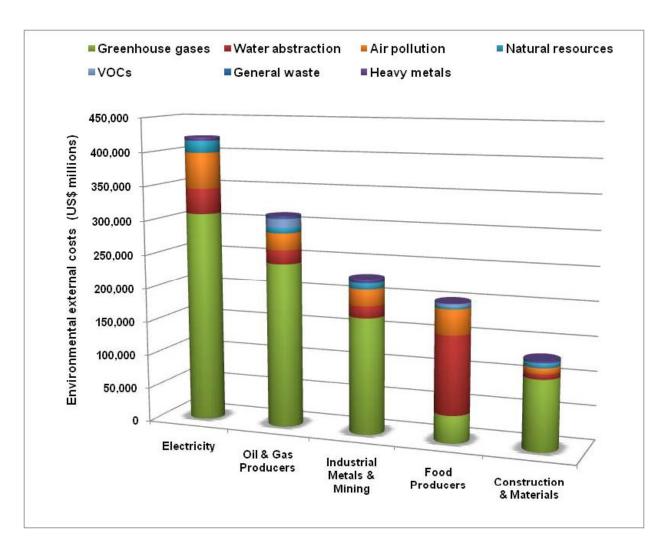
- 1. Water: Key Issues
- 2. Water, Energy & Sanitation
- 3. Water Management in a Green Economy
- 4. Benefits of Investing in Water
- 5. Enabling Conditions

Enabling Conditions for EfficientWater Management

National institutional & financing arrangements

International trade agreements

Capacity & enforceability for market-based instruments

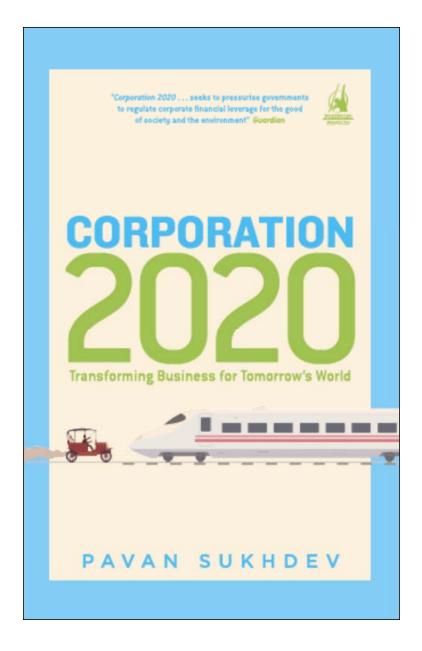

Capacity for price tiering & allocation systems

"TMD" for subsidies & cost externalities

Appropriate Micro Policies : Impacts of Private Sector

"Negative Externalities": Public Costs of Private Profits

- US\$ 2.15 trillion/ year (est.) global environmental costs of economic activity of top 3000 Corporations
- Five sectors
 account for about
 60% of
 environmental
 costs


Source: Trucost for UNPRI, 2010.

Measuring & Disclosing Water Impacts

2010	Non-financial performance	Economic value € million	Economic value %
PUMA Operations			
Greenhouse Gases (ktCO ₂ e)	110.1	7.2	7.6%
Water ('000 m ³)	108.8	0.1	0.1%
Tier 1 Suppliers			
Greenhouse Gases (ktCO ₂ e)	131.4	8.6	9.1%
Water ('000 m ³)	5,319.8	0.8	0.8%
Tier 2 - 4 Suppliers			
Greenhouse Gases (ktCO ₂ e)	476.0	31.2	33.1%
Water ('000 m ³)	72,064.5	46.5	49.3%
Total			
Greenhouse Gases (ktCO ₂ e)	717.5	47.0	49.8%
Water ('000 m ³)	77,493.1	47.4	50.2%
Total Economic Value		94.4	100%

- Transparency, Measurement, and Disclosure...
- Accounting for Externalities...
- "Corporation 2020".....

Thank You

www.corp2020.com

www.unep.org/greeneconomy

