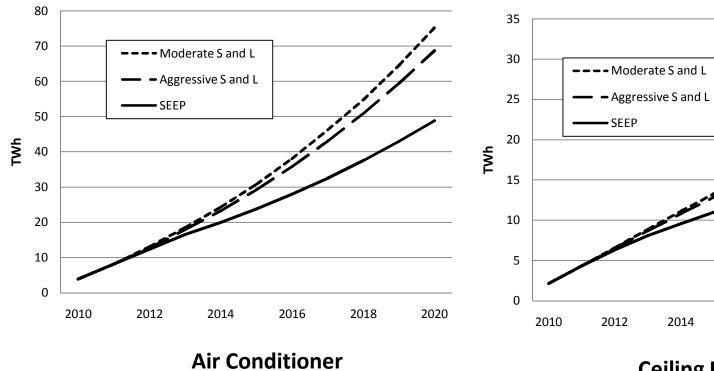
Energy Security through Innovative Technologies in the context of Indian needs and circumstances

Dr. Ajay Mathur
Bureau of Energy Efficiency

Energy Use in India


Fuels Electricity Primary 670 million toe 200 GWh Energy Supply 290 million toe After 1000 GWh Conversion 290 million toe Final Energy 750 GWh

Potential Areas for Innovation

- Thermal Power Plant: Doubling of coal use in past 8 years
 - 200 of 280 million toe is lost in conversion
- Industry: Doubling of fossil fuel use in past 12 years
 - 20 of 100 million toe of coal and oil exhausted as waste heat in 120-160°C range
- Vehicles: Doubling of fuel use in past 8 years
 - 45 of 60 million toe is not passed to the wheels
- Agriculture: Doubling of electricity use in last 15 years
 - 120 GWh of 170 GWh is not converted into pumping energy in agricultural pumps
- Lighting in Buildings: Doubling of use in past 8 years
 - 30 GWh of 60 GWh is not converted into light in lighting fixtures
- Space Cooling: Doubling of use in past 5 years
 - Fans: 2 GWh of 3 GWh is not transferred to air by fans
 - Air Conditioning: 18 of 24 GWh are thermodynamic losses in air conditioning

Areas	Base technology	Target Technology	Challenge
Thermal Power Plant	Sub Critical η ≈ 33- 35% Super Critical η≈ 38- 42%	Ultra Super Critical	Materials development & Plant engineering
Industry	Low grade waste heat (120-160 Deg C) wasted	ORC: Waste heat to electricity $\eta \approx 10\%$	Cost competitiveness
Agricultural Pumps	η ≈ 25-30 %	η ≈ 60% 5-year reliability	Reliability and cost competitiveness
Transport	Fuel Eff. Of 6.09 liter/100 km (2009)	Fuel Eff. of 5.5 liter/100km by 2015 4.78 liter /100km by 2020	Cost competitiveness
Buildings			
AC	EER 1Star 2.5 5 star 3.3	EER/SEER >6.0	Engineering & Cost competitiveness
Lighting	60/15 W	8-10 W	Cost competitiveness
Fans	70-80 W	35 W	Cost competitiveness

Saving Potential

2016 2018 2020

Ceiling Fans

Source: Prayas Energy Group

Realization....

- Instruments to product Development and Adaptation of Advance Technologies
 - Mission mode
 - Development from first principle (e.g. material development) - AUSC technology
 - Super Efficient Equipment Program (SEEP) model
 - Product introduction in the market Upstream incentivization
 - Energy Efficiency Innovation Support Program (EE-ISP)
 - Support for product incubation, risk aversion and market creation