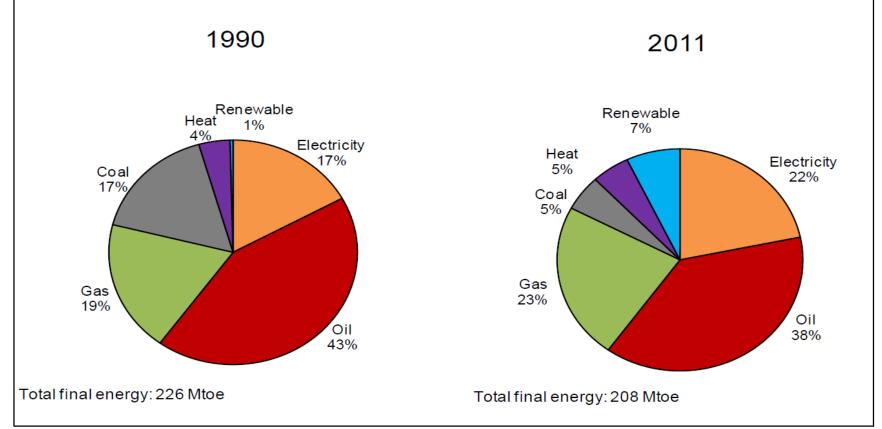


Essen, 30.08.2013 DFIC – Dr. Fromme International Consulting

Zweigertstr. 43, 45130 Essen, www.dfic.de, Tel.: (0) 201 / 878 49 6, Fax: (0) 201 / 878 49 77

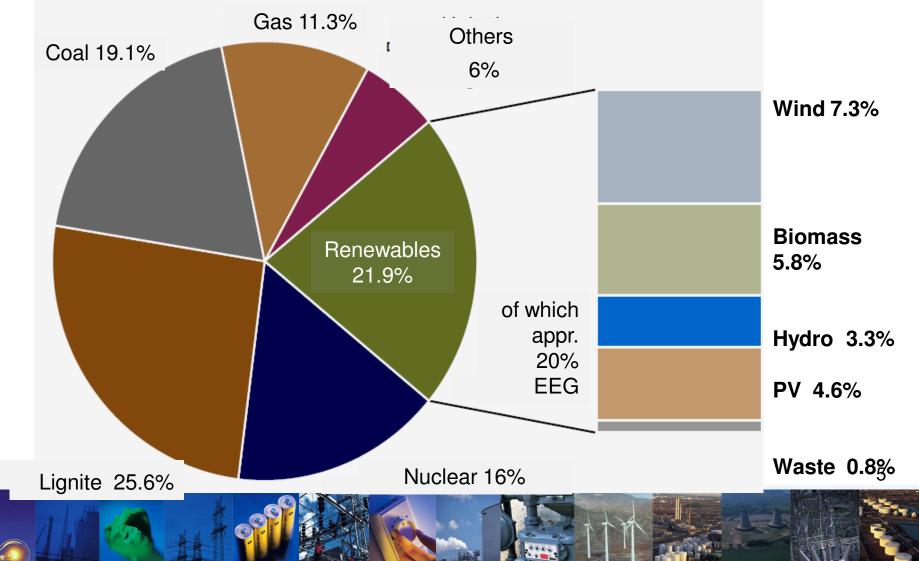
Presentation Overview

- Energy Scene in Germany
- Energy Efficiency in Germany
- Energy Management
- Co-generation and Tri-generation
- DFIC Experience


Sketch of the German Energy Situation

- Energy consumption in Germany is structurally high, as
 - it is a densely populated country
 - it has been highly industrialised for decades
- Availability of fossil energy resources is very limited / expensive
 - => Hard coal mining is phasing out in 2018
 - => Energy has always been comparatively scarce / expensive
 - => High vulnerability from oil price shocks of the 1970s
- Since mid 1970s: Regulatory measures and incentives defining energy efficiency standards were implemented
- Not one major legal framework but a multitude of energy savings approaches, mainly in building and industrial sectors

Final Energy Consumption Development of the shares of energy carriers



Source: Arbeitsgemeinschaft Energiebilanzen 2012

Power Generation 2012 : 617 bill. kwh Share of renewable energies steadily increasing

Renewable Energies Act

Payment scheme EEG 2012

Wind energy

- Onshore: 5.02 9.2 €ct/kWh (according to duration of payment) + 0.5
 €ct/kWh each for a system service bonus and/or a repowering bonus.
- Offshore: 3.5 13 €ct/kWh (according to duration of payment) + bonus of 2 €ct/kWh for systems commissioned prior to 1st January 2016.

Solar energy (2013)

- Monthly degression
- PV roof on 01.05.2013: 15.4 10.1 €ct/kWh (depending on system size).
- Own use replaces an average of appr. 28 €ct/kWh for households and 14 €ct/kWh for industry

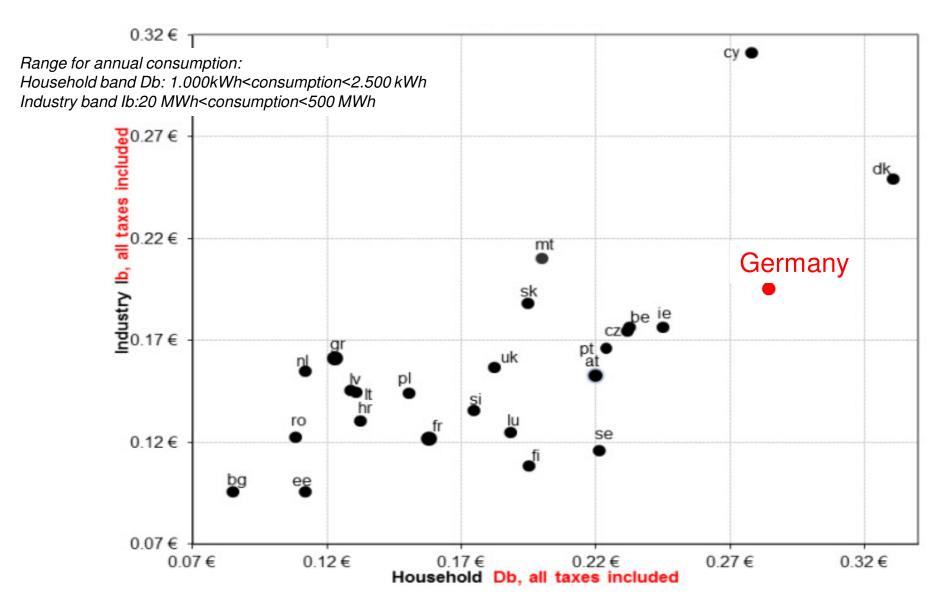
Geothermal energy

- 10.5 16 €ct/kWh (according to system size)
- bonus of 4 €ct/kWh for systems commissioned prior to 1st January 2016
- heat use bonus of 3 €ct/kWh
- bonus for use of petro-thermal technology of 4 €ct/kWh.

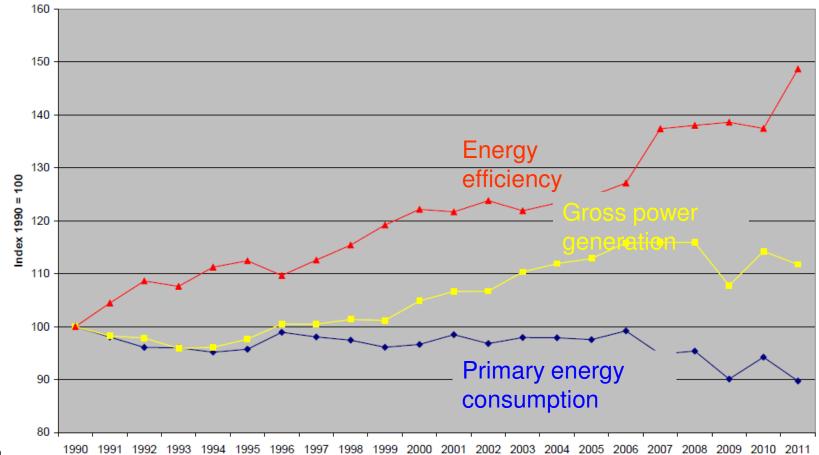
Post Fukushima Energy Policy in Germany

"Speedier Energiewende"

- June 2011: decision to abandon nuclear power until 2022 and
- Adjusted goals 2020:
 - Share of Renewables 35 %
 - Reduction of electricity consumption 10 %
 - Reduction of heat demand in buildings 20 %
- Goals 2050 still valid:
 - Reduction of CO₂-emissions at least 80%
 - Electricity production: Renewables 80%
 - Reduction of energy consumption 25%
- Strengthening the super grid
- Rising prices: Protecting the electricity intensive industry



7


Electricity Prices in Europe (1st semester 2012)

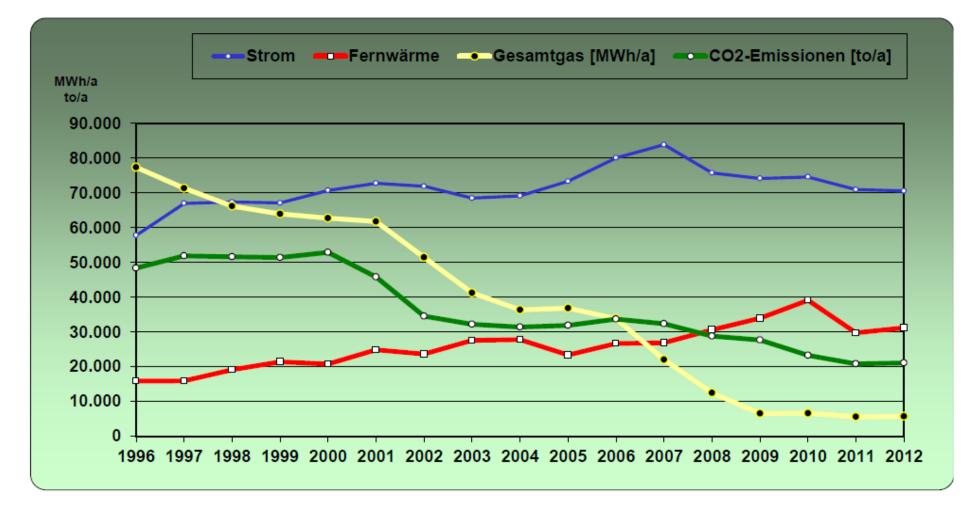
Development of Primary Energy Consumption

Development and comparison with power generation and energy efficiency

Source: AGEB, StBa

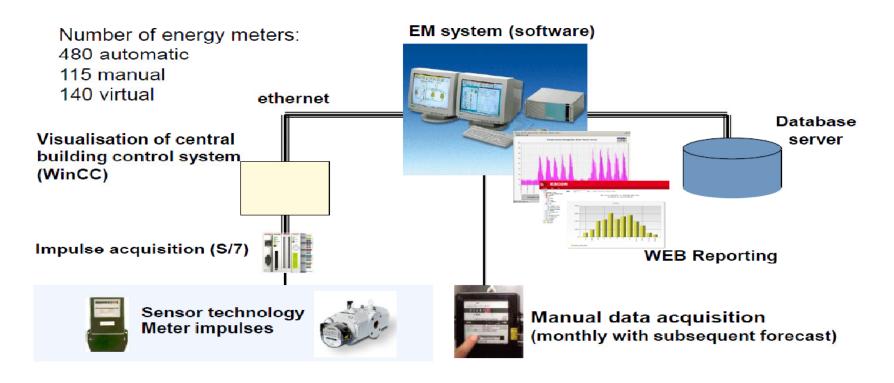
How to achieve progress in energy efficiency

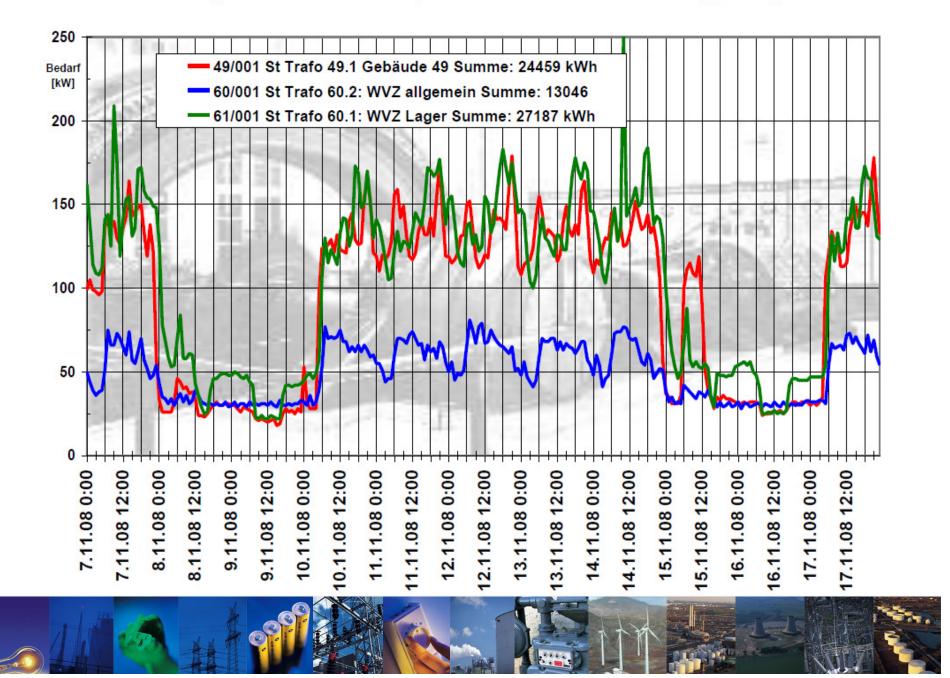
The case of Miele



- A "normal" German company in household appliances
- 5,000 employees and workers at headquarters / main factory
- Highly integrated production (foundries, etc.)
- Energy consumption at site ca. 120 GWH
- High space heating demand (1/3)

Development of energy consumption at Miele


Changes over past 20 years: Volume of buildings +82%, Heat energy -44%

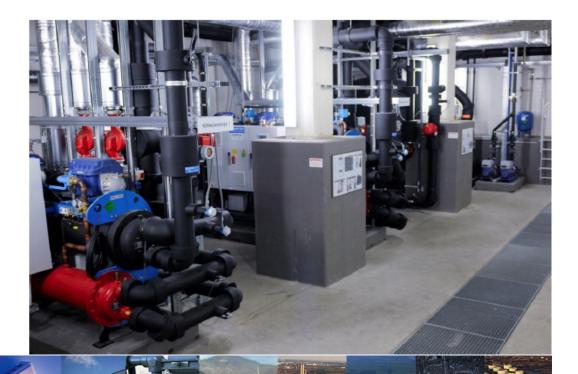

Make departments accountable for energy consumption detailed submetering

Stationary acquisition of energy data - System structure

Measurement of power consumption to reduce energy requirements

A systematic and continuous analysis of waste heat recovery potentials based on kpi

Example: Waste heat records


Übersicht der Anlagen und Kennzahlen

Re-design of heating and cooling includes tri-generation of electicity heat and cold as well as circulation pumps **Rebuilding of heat circulation systems**

- Connection of a cooling unit to heat supply network
- Recuperation of heat losses

Energy management : a systematic approach

Requirements of ISO 50001

Incorporating German experience from DIN / ISO 9001, ISO 14001, as well as from emissions trading.

These norms describe requirements applicable to an energy management system (EnMS) that enables a company to continuously improve its energy performance by adopting a systematic approach to energy management and at the same time to meet legal requirements and other obligations.

Introducing energy management systems

Continuous improvement as the EnMS' driving force

Act

• Management assessment (incl. discussion of data and results)

Making decisions to:

- improve organisation and communication
- set up new objectives and implement new measures

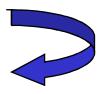
Plan

- Energy strategy (policy) of the management
- Management programme and energy saving targets
- (based on data and cost analyses)

Check

- internal (energy) audits
- visits/inspections,
- data, facts, documents
- talks with staff members
- (if required, external assessment and further recommendations)

Do


Energy organisation

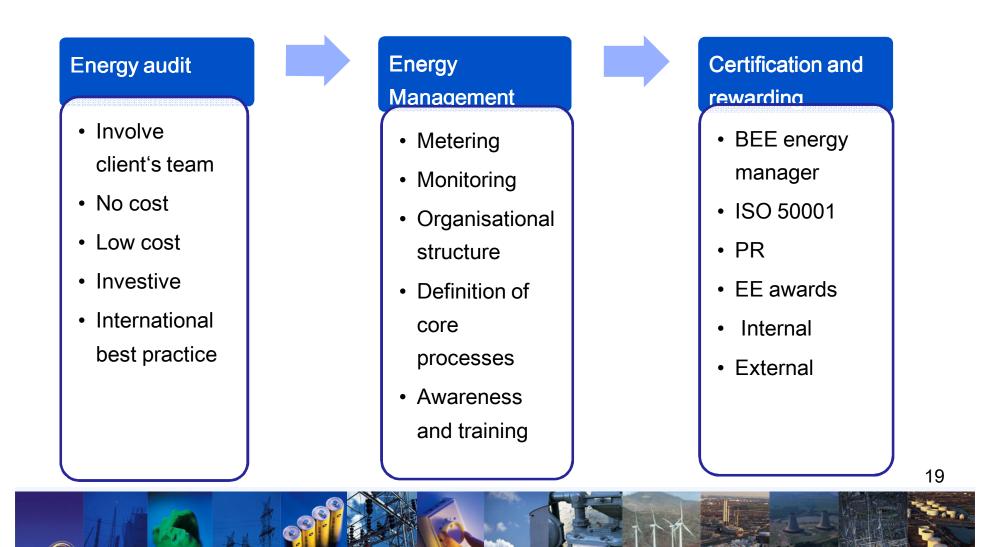
(Officer, management representative, energy team)

Regular communication
 among all parties involved,

Documentation

Tracking objectives and activities

The DFIC approach to energy management


- Make energy efficiency a top management concern
- Energy management must englobe the entire organization
- It's about people : awareness and training
- Make people responsible
- Attribute energy cost to each department
- Let people compete
 - Ideas competition
 - EE achiever of the month

DFIC Approach to Energy Management

Project Example Energy Efficieny Example Coal India

- Indepth analysis of energy situation
- International benchmarking
- Identification of most advanced technologies and suppliers
 - Efficiency increase from 34 % to 90 % for fans
 - VSD and modern control technologies
 - Submetering
- Economic and financial analysis with ROI and cost of ownership
- Development of energy management
 - energy management organisation
 - installation of software for energy monitoring and software

Example on renewable energies Solar City Madhyamgram

- One of the few Municipalities selected by MNRE
- An integrated approach for energy effcinecy and renewable energies
- PV for public buildings
- Street lighting
- Energy efficiency in public buildings
- Solat based infromation system
- Use of organic waste for biogas production
- = > masterplan and then implementation of investment

DFIC experience in energy management and efficiency projects

DFIC Germany

- Co-operation with German governmental organisations => access to funding
- Experience with energy effciency and auditing projects in Germany and many other countries
- Co-operation with Germany's world leading manufacturing and engineering firms

DFIC India

- Established in Kolkatta at BCCI
- Focus on energy and management issues
- Cooperatiion with leading universities
- Co-operation with German co-operation GIZ / BEE

BACKUP

Promoting Cogeneration New CHP Act 2012 (1)

- Target: doubling CHP share in electricity production to 25% in 2020
- Bonus system again; paid finally by the electricity consumers (max. 5.41 Cent/kWh over stock exchange revenue)
- Grant on electricity fed into the public grid or directly used
 - > 2 MW el -> 1.8 ct/kWh over max. 30,000h
 - 250 kW to 2 MW -> 2.4 ct/kWh over max. 30,000h
 - 50 kW to 250 kW -> 4.0 ct/kWh over max. 30,000h
 - $\leq 50 \text{ kW} \rightarrow 5.41 \text{ ct/kWh over 10 years or. max. 30,000h}$
- Grants for small CHP-plants < 20 kW (from 2014 decreasing subsidy rate by 5% p.a.)
 - [0 1 kW el]: 1,500 € [4 10 kW el]: 100 €/kW
 - [1 4 kW el]: 300 €/kW [10 20 kW el]: 50 €7kW

Promoting Cogeneration New CHP Act 2012 (2)

- Grant for modernization of CHP plants (same bonus increments as listed above)
 - Modernization rate at least 25% -> bonus over 10 years or max. 30,000h
 - Modernization rate at least 25% -> bonus over 5 years or max. 15,000h
- Participation in emission trading: additional bonus of 0.3 ct/kWh
- In total fpr CHP plants: Max. 750 Mil €/a for CHP plants
- Max. 150 Mil €/a for district heating grid investments if at least 60% CHP heat share; max. 10 Mil €/project.
 - Grant of 100 €/m or max. 40% subsidy for diameter ≤ 100 mm
 - Subsidy of max. 30% for diameter > 100 mm
- Max. 5 Mil €/project for heat/cold storages
 - Subsidy max. 250 €/m³ water equivalent for storages up to 50 m³
 - Max. 30% of investment costs for storages > 50 m³ water equivalent

DFIC - Dr. Fromme International Consulting Zweigertstr. 43 45130 Essen Germany

26

you

Shank 1