
GASIFICATION In lieu of INCINERATION

by J. Mukherjee Managing Director GP Green Energy Systems Pvt Ltd

Background

- GP Energy, through its parent company entered into the field of Biomass Gasification in 1987.
- It is based on fixed grate updraft technology.
- The basic engineering package was supplied by an expert from Power Gas Corporation, UK.

GP Gasification Plant

Particulars of Producer Gas

Gas Composition :

CO ₂ :	8 -10 %	O ₂	: Less than 1.0 %
CO : 18 to 20% CH_4 : 1.5 -2 %			
H_2	: 15 to 18%	N ₂	: 54 - 56 %

Calorific Value (Gross) : 1200 - 1300 K.cal/ Nm³

Sp. gravity : 0.92 (air = 1)

Yield of Gas $: 1.90 - 2.30 \text{ Nm}^3/\text{ kg. of biomass}$

Tar & Particulate in gas $: < 10 \text{mg/Nm}^3$

Commercial Applications of GP Gasifier

- Power generation by dual fuel i.e. 70 75% of gas & 25 30% of diesel oil in Diesel Engine.
- Power generation by single fuel i.e. 100% of gas in Spark Ignition Engine.

Process heating up to 1100°C by firing of the gas.

Feed stocks for gasification

■ Branch, Twig, Saw Dust etc.

■ Stalk of wheat, corn etc

■ Mustard Seed Hull & Stem

■ Bagasse

Corn Cob

■ Rice Husk, straw etc.

Installed more than 100 Gasifiers in India, Nepal, Thailand, Guyana (S.A) out of which following clients have placed repeat orders :-

- 1. ITC Limited.
- 2. Dabur Nepal Ltd.
- 3. Britannia Industries Ltd.
- 4. Parle Food Products Pvt. Ltd.
- 5. Heemankshi Bakers Pvt. Ltd.
- 6. Hulas Steel Industries Ltd.
- 7. Kwality Diet & Food Products Pvt. Ltd.
- 8. Mahaicony Rice Mill, Guyana.

Specific Advantages of GP Gasifier

- Continuous operating system
- Multi-fuel system
- High thermal efficiency
- Virtually tar free gas
- Sturdy construction
- Attracts fiscal benefits from government

Applications

Decentralized Power Generation for

Industries in captive use

Selling to the grid

Electrification of villages

Applications

firing of boiler

Annealing and Heat Treatment

Thermal use for

Firing of kiln

Hot air generation

Melting of metal

Bakery & Biscuit Oven and lot more . . .

G⊍SSING RENEWABLE

ENERGY

Cost of Energy Generation

largely depends on the following three factors -

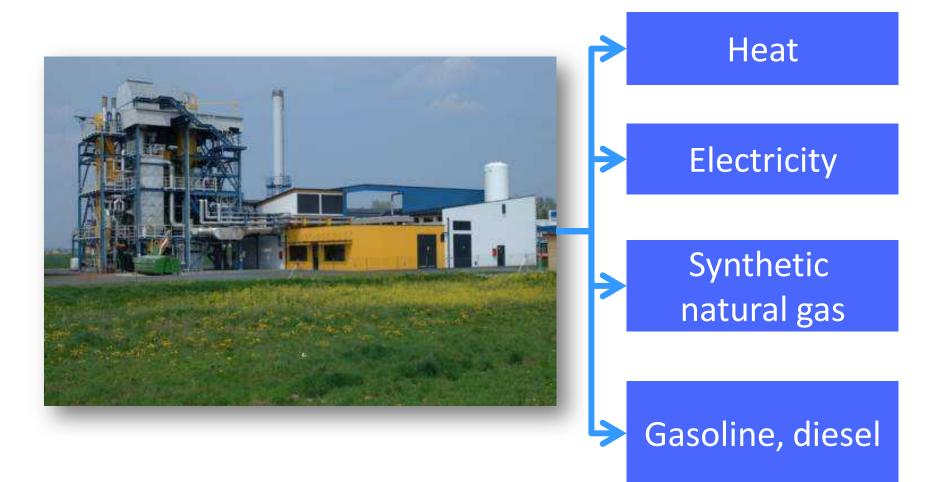
- capacity of the plant

- cost of input

- plant load factor (plf)

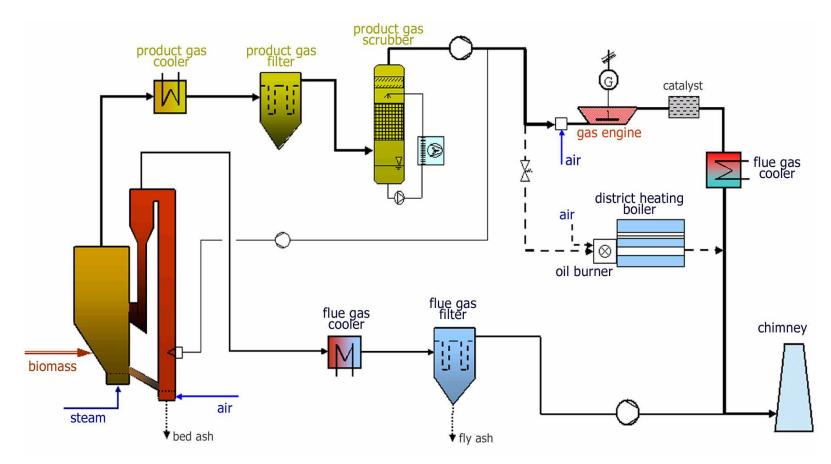
Advantages of Biomass Gasifier

- Energy any time, any where
- High efficiency ensures low investment and cheap energy.
- wide range of economically viable capacities from few kilowatts to few megawatts.
- de-centralized stand-alone system.
- environment friendly, carbon neutral system.


Partnership

Gussing Renewable GmbH joined as a partner for equity & technology on 30-01-2012

Gussing Gasifier



Dual fluidized bed steam gasification developed by Gussing Renewable

28.08.2015

Gasification Technology

Flow diagram of the Gussing Plant

Particulars of Product Gas

Gas Composition :

CO ₂	:15-25 %	CO: 20 – 30 %
CH_4	: 8 – 12 %	H ₂ : 35 – 40 %
N ₂	: 3-5%	

Lower Calorific Value : 12.50 MJ/Cubic Meter

Thermal Efficiency (related to product gas) : 78%

Yield of Gas : 1.62 – 1.65 Nm³/ Kg.

Energy supply to community

A 5 MW Gussing Plant energizing a township since 2001

Vehicle Fuel

Vehicles run on synthetic gasoline produced in Gussing plant

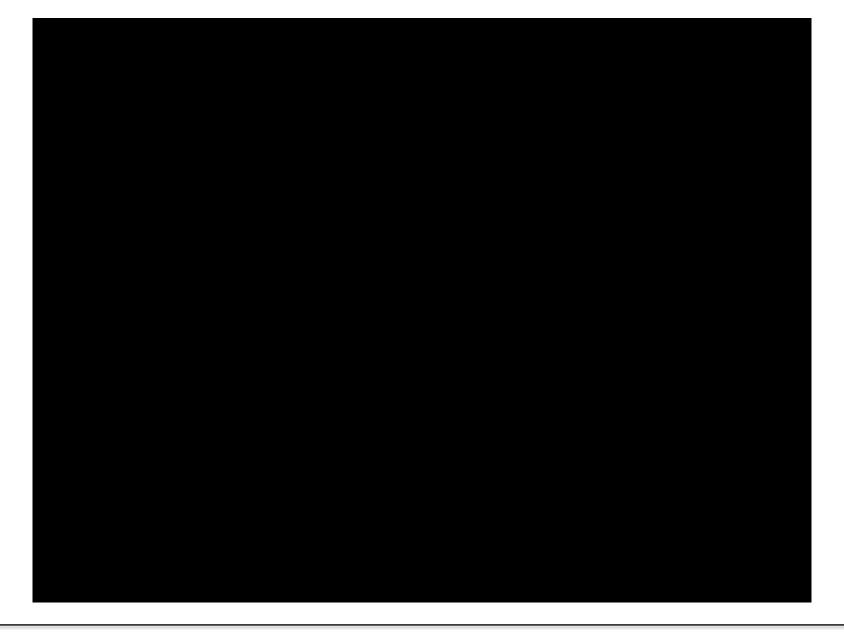
Feed stock tried

- Wood ChipsRape seed grisp
- Saw dust
 Brown coal
- Clover pellets
 Sewage sludge (Pellets)
- Animal residues
 Barley
- MSW Hard coal

Waste to Energy

- About 1,40,000 tons of MSW is generated per day in the country. This figure could be twice as much by 2020.
- From dry high calorific valued combustible waste, the potential capacity for Waste-to-Energy plants is expected to grow to approx. 2200 MW by 2030.
- It emits poisonous methane gas, which is 21 times more harmful than CO₂ and also attacks the ozone layer.
- Hence, Waste-to-Energy maximizes resource value, while minimizing environmental impact so that both economy and environment can thrive.

Gasification vs. Incineration


- In gasification process, waste is burnt in O_2 deficient condition to produce a gas which can be thoroughly cleaned before any use, whereas in case of Incinerator waste is burnt in a O_2 rich environment and product is CO_2 and heat with pollutants.
- O₂ deprived atmosphere at low temperature in gasification does not allow formation of Dioxins and Furans but in combustion with O₂ rich atmosphere and temperature formation and reformation of toxic Dioxins and Furans takes place which end up in exhaust gases along with fly ash.

Gasification vs. Incineration

- Large molecules of plastic are completely broken down to components of syngas in a gasifier reactor but combustion of plastic produces toxic gases with high SOx and NOx.
- The overall efficiency in case of gasification is around 25-26 % whereas the same is 20-22% in case of rankine cycle. As a result, feed-stock / fuel consumption is lower by almost 25%.
- Water and auxiliary power consumption for gasification is minimal and much lower than those for incineration.

Thank you for your kind attention

