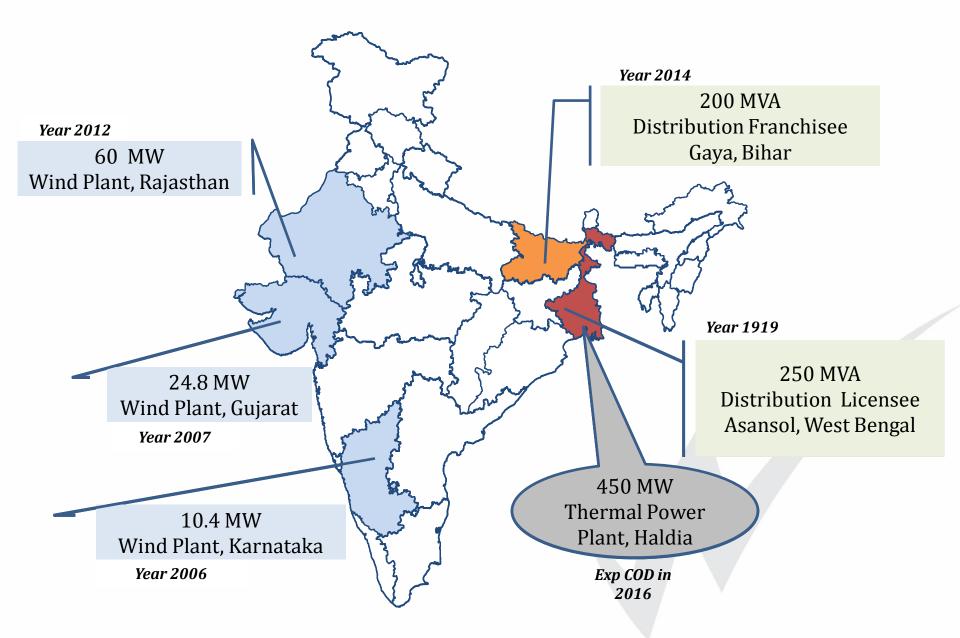

- Introduction
- Projected Power Supply Position in INDIA
- Current Installed Capacity from Various Sources
- What is Clean Energy?
- Important factors for Clean Energy
 - Harmonics (Cause of Dirty Power)
 - Power Factor
- Way forward


SREI Group: India's leading financial institution in Infrastructure sector

Evolution of India Power Corporation Ltd.

Portfolio

- 12 MW embedded TPP
- 450 MW TPP in Haldia, West Bengal
 - expected COD within 2015
- 540 MW TPP in West Bengal Planned

Capabilities

- Operation and maintenance of power plants handled by in-house team
- In-house project development and implementation team
- Fuel sourcing and intermediation handled by group company – Swyambhu Natural Resources Ltd.

Rajasthan 60 MW

> Karnataka 10 MW

Gujarat 25 MW

Generation - Renewables

Portfolio

 95 MW of operational Wind Capacity

Capabilities

- In-house project development team
- Operation and maintenance coordinated by internal teams
- Ensures high machine availability and PLFs

Distribution License Area

- In operations since 1919
- Geographic Area:
 - Asansol –Durgapur- Ranigunj area in Burdwan District of West Bengal.
- Licence area 618 sq. km
- Connected Load of 250 MVA
- Input Energy > 1000 GWh

Distribution Franchisee Area

- In operations since 01 June 2014
- Geographic Area
 - Includes Gaya, Bodh Gaya (hub for Buddhist Pilgrimage), Manpur and their adjoining areas.
- Franchise Area 1500 sq. km
- Connected Load of 200 MVA
- Input Energy > 600 GWh

License Area

- In operations since 1919
- Geographic Area:
 - Asansol –Durgapur- Ranigunj area in Burdwan District of West Bengal.
- Licence area 618 sq. km
- Connected Load of 250 MVA
- Input Energy > 1000 GWh

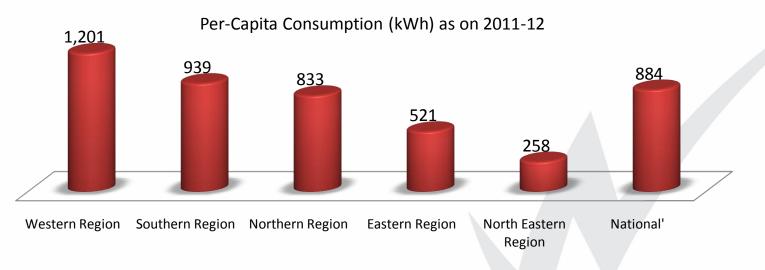
Achievements

- T&D Loss levels <2.7% (One of the lowest in India)</p>
- Grid reliability >99.8% (One of the highest in India)
- Multiple power feeds to ensure supply stability
- Advanced grid with smart grid initiatives auto FPIs, Automated Meter Reading, integrated Metering, Billing and Collection

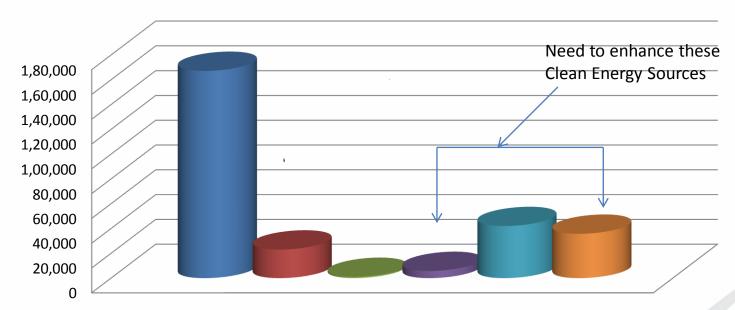
Distribution Franchise Area - Gaya, Bihar

Key Statistics as on 1st June 2014 (prior to takeover)

No of Consumers	1,00,000
Connected Load	200 MVA
Input Energy (Annual)	600 MU
AT&C Losses	71%
Collection Efficiency	84%


DISTRIBUTION FRANCHISE (DF) – GAYA, BIHAR

- IPCL awarded Distribution Franchisee of Gaya town and adjoining area of about 1500 sq kms.
- Taken over operations from 01st June 2014
- IPCL procures power at "Input Rate" and supplies power to consumers at tariff fixed by the State Electricity Regulatory Commission (ERC) "Regulated Tariff".
- Average Power availability increased from 14 hours to 22 hours in a day
- 10% AT&C loss reduction


All India Power Supply Position in Fy 2015-16			
Region	Requirement in MU	Availability in MU	Surplus/Deficit
Northern	3,55,794	3,54,540	-0.40%
Western	3,53,068	3,64,826	3.30%
Southern	3,13,248	2,77,979	-11.30%
Eastern	1,24,610	1,27,066	2.00%
North-Eastern	15,703	13,934	-11.30%
Total	11,62,423	11,38,345	-2.10%

□ All DISCOMs accumulated losses are more than <u>~Rs. 2,50,000 Crore</u>

*Source as per PFC report Mar-13

All India Installed Capacity in MW

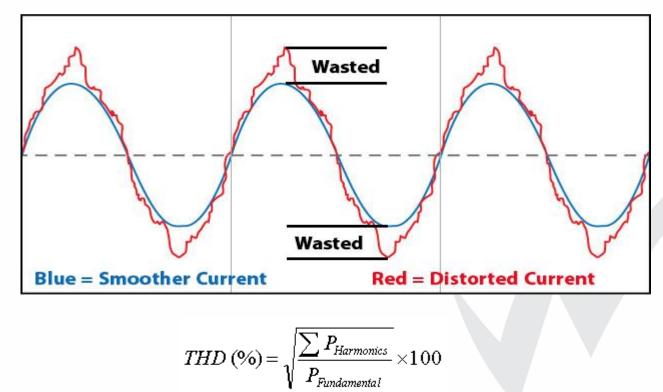
	Mar-15
Coal	1,67,208
Gas	23,062
Diesel	994
Nuclear	5,780
Hydel	41,997
Renewable Energy	35,777

- 'Clean Energy' is normally synonymous with 'Renewable Energy' (i.e. wind energy, solar energy, hydro energy, and geothermal energy), it also relates to Clean & Quality Power
- Since, ultimate requirement is to get 24*7 Quality Power with Reasonable Cost in an Environment Friendly system for Sustainable Growth
- It can be achieved from renewable source as well as conventional source with little bit of efforts for better Energy security,

Some strategies to enhance Energy Security:

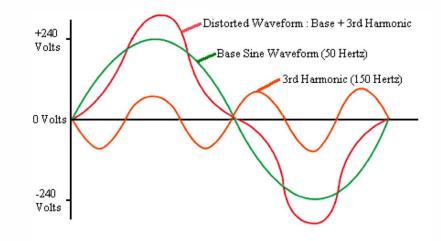
- Improving the efficiency of extraction of fossil fuels
- Improving Fuel efficiency of new coal fired power plants
- Adopting energy efficiency & demand side management
- Controlling Harmonics in Power System
- Improvement of Power Factor & voltage regulation
- Developing Renewable energy Sources like Solar, Wind etc

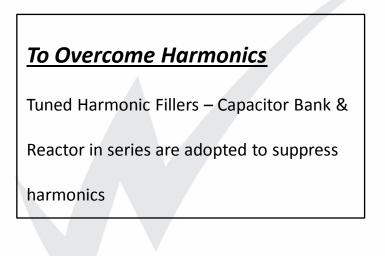
<u>Important Factors for Clean Energy -</u> <u>Quality Power</u>


Harmonics (Cause of "Dirty Power")
Power Factor

What is Harmonics?

- Harmonics are multiples of fundamental frequency of an "Electrical Power system"
- Harmonics in power systems result in *increased heating in the equipment and conductors*, misfiring in variable speed drives, and torque pulsations in motors
- Total Harmonic Distortion expresses the amount of harmonics in the system, presence of harmonics is the cause of *'Dirty Power'*





Major Causes of Harmonics

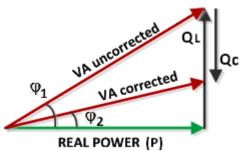
Devices that draw non-sinusoidal current when sinusoidal voltage is applied creates harmonics

- Electronic Switching Converters
 - Computers, UPS, Solid state rectifiers
 - Electronic process control equipments, PLC's,
 - Lighting ballast, including light dimmer
- Arcing Devices
 - Discharge Lighting like Sodium & Mercury Vapors
 - Arc Furnace, Welding Equipments
 - Electrical Traction system
- Ferromagnetic Devices
 - Transformers operating near saturation level,
 - Magnetic ballast (Saturated iron Core)
 - Induction heating equipments, chokes, motors
- Appliances
 - TV Sets, Air Conditioners, Washing Machines, Microwave Ovens
 - Fax Machines, Photocopies, Printers

What is Power Factor?

- Power Factor (PF) is defined as the ratio of the 'Active power' (kW) flowing to the load to the 'Apparent Power' (kVA) in the circuit, which is always *less than or equal to 'unity*'
- Theoretically Unity PF means transfer of *maximum power for the same distribution system capacity*

Cause of Low Power Factor


Inductive Load is the major cause of Low PF

How to Improve?

- Reactive power compensation by putting suitable 'Capacitor Banks'
- Capacitor Bank should be installed near the load

Advantage of PF Improvement

- Reactive component of total current in the system from source is reduced
- Power losses are reduced in the system
- Voltage level at the load end is improved
- kVA loading on the source & network is reduced resulting imporovement of system capacity

- To Achieve 24*7 'Energy Security' with Quality Power in Reasonable Cost in an Environment Friendly system for
 - Sustainable Growth
 - Better Voltage Regulation
 - Improved Power Factor
 - Harmonics Free System
 - Maintaining Rated Frequency
 - Improving the Energy Efficiency of the system by reducing Techno-Commercial Losses

Thank You

i