

Introduction of Ammonia based FGD

Topics

- 1. Company Profile
- 2. Introduction of EADS Technology
- 3. Reference projects
- 4. CAPEX & OPEX

Company Profile

Jiangnan Environmental Protection Group Inc. (JNG) has three subsidiaries of JNG (China), JNG (US) and JNG (Petrochem), and JNG (Fertilizer) is under establishment.

JNG (China) known as JNEP, is responsible for Power & Refining sector in China and part of Asia markets.

JNG (US) known as JET, is responsible for Power in the U.S. and other international markets including INDIA.

JNG (Petrochem) is responsible for global refinery business.

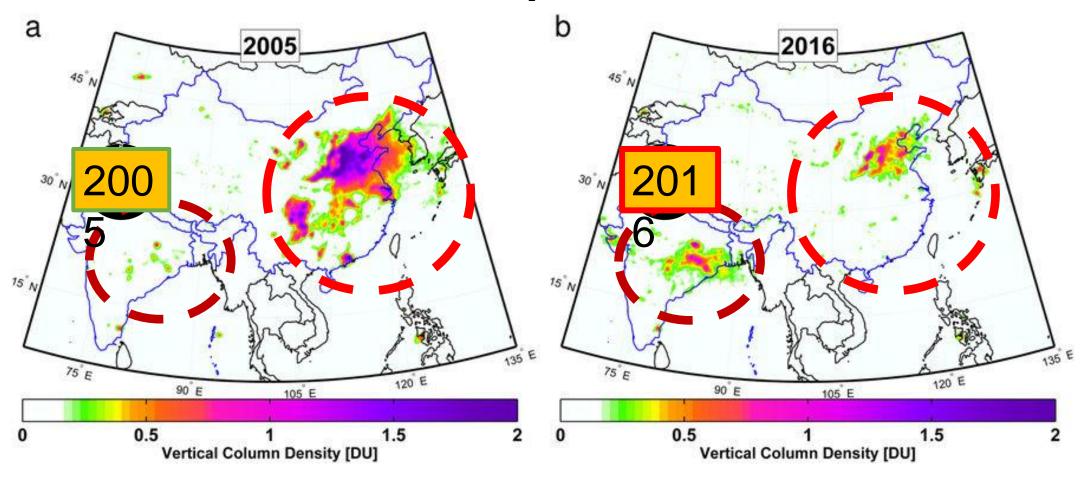
JNG (Fertilizer) is responsible for global sulfur-containing compound fertilizer business.

World Leader in Ammonia-based Desulfurization

150+ projects and approx. 300 installed units

20+ installations with capacity > 300MW

80% market share in ammonia desulfurization


The primary author of "China's Technical Specifications for Ammonia-based FGD"

Why FGD?

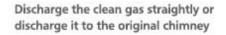
Satellite data reveal India overtakes China as world's top SO2 emitter

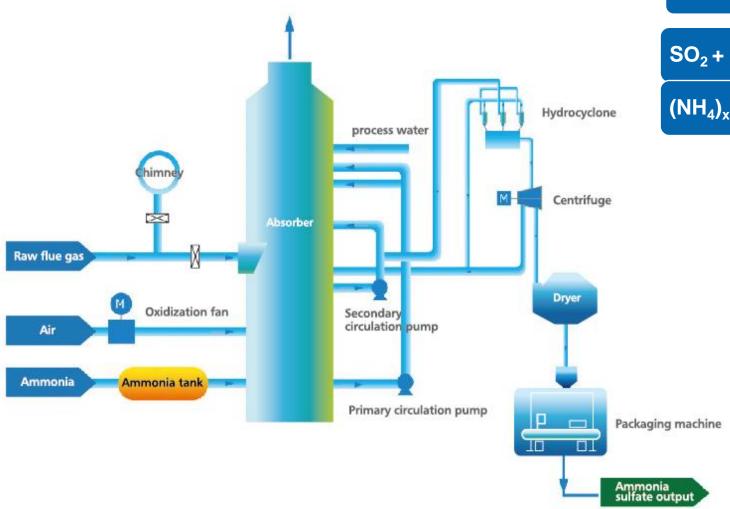
Since 2007, emissions in China have declined by 75% while those in India have increased by 50% ~33 million people now live in areas with substantial SO₂ pollution

Reagent - Consumption, Cost & Availability

By-Product - Revenue / Disposal

Emission Std
Current and Future


% SO2 in Flue Gas


Utility Consumption

Plant Location/ Layout

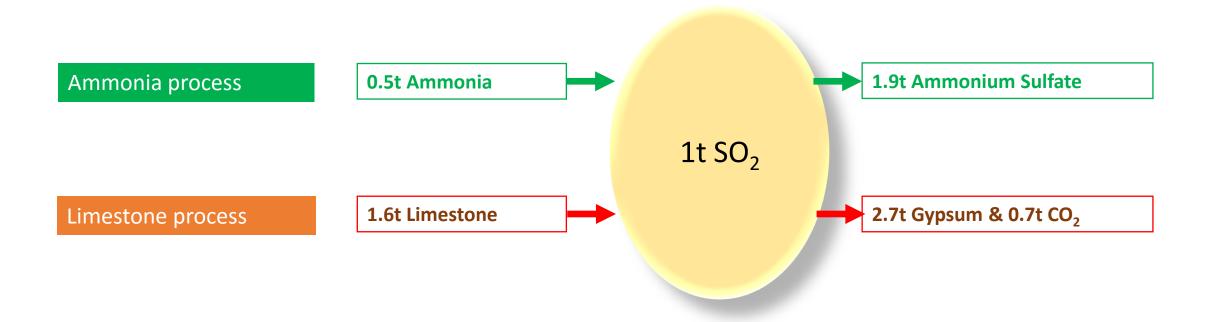
EADS Technology: Process description

Process Mechanism

$$SO_2 + H_2O + x NH_3 \rightarrow (NH_4)_x H_{2-x} SO_3$$
 (1)

$$(NH_4)_xH_{2-x}SO_3 + \frac{1}{2}O_2 + (2-x)NH_3 \rightarrow (NH_4)_2SO_4$$
 (2)

Process Systems


Flue gas system

Absorption system

Oxidation system

Ammonium sulfate system

EADS Technology: Features and Advantages

High SO₂ removal efficiency: 99% or higher

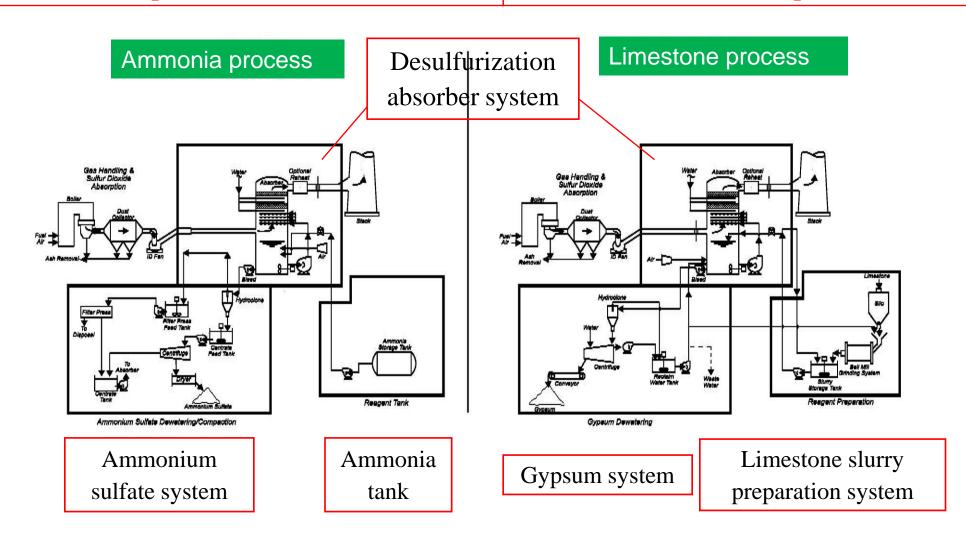
Environmental friendly: *no waste and water waste*

Favorable economics: 3.8 ton AS/ton NH3

High flexible operating load: 30 – 110%

Flexible and customized system designs

Absorbent; layout

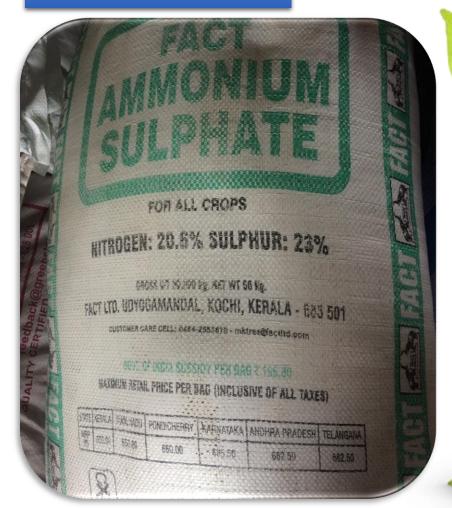


Comparison of Ammonia and Limestone Processes

0.5 ton Ammonia \rightarrow 1 ton SO₂ \rightarrow ~1.9 ton Ammonium Sulfate

1.6 ton Limestone \rightarrow 1 ton SO₂ \rightarrow 2.7 ton Gypsum

Advantages against Limestone FGD


	Limestone	EADS	Remarks
Process	Consume 1.6 t limestone & generate 0.7 t CO ₂ per ton SO ₂	Turn waste (SO ₂) to a high vale byproduct	Limestone: Bigger environment impact EADS: More environmentally friendly; More favorable economics
Capital cost	Around 10 percentage lower for EADS		
Power consumption	1.2 -1.3 A	1A	EADS: 20-30% less power
Operating cost	1.2-1.3 B	1B	EADS: 20-30% less operating cost
Water consumption	More	less	EADS: 10 - 15 % less water consumption
SO ₂ reduction	97-98%	Up to 99.9%	EADS: Easier to upgrade to meet lower SO2 emission in the future
SO ₂ emission	100 - 200 mg/Nm ³	As low as 30 mg/Nm ³	Limestone: Much higher cost to upgrade
Waste water generation	Yes	No	Limestone: More waste water needs to be treated
Solid waste generation	Yes	No	Limestone: Issues with Limestone sourcing and solid waste disposal
Synergy with de-NOx	No	Yes	EADS: Both de-SOx & de-NOx use ammonia; More efficient process; lower overall cost

Ammonium Sulphate Bags in India

3 Ways to Sell Ammonium Sulphate

Domestic Indian Market

Compound Fertilizer NPKS

Export Market mainly SEA

World Largest Ammonia FGD Project: Shenhua Ningxia Coal Industry Group 10 x 200 MW Generation Sets

Client Name	Shenhua Ningxia Coal Industry Group CTL Project	
Location	Yinchuan, Ningxia Province, China	
Capacity	10 $ imes$ 200 MW units	
EADS Generation	Currently 3rd generation, being upgrading to the 4th generation	
Absorber Configuration	1 absorber for 1 unit, total 10 absorbers	
Stack Configuration	Two concrete stacks with metal liner	
Absorbent	99.6% anhydrous ammonia	
Byproduct	Ammonium sulfate in bags	

EADS Technology with Ultrasonic PM Control: Wanhua Chemical Inc. Project

Project Type: Ultra-low emission

Date of completion: May, 2015

Inlet PM content ≥ 20 mg/Nm³

Outlet PM content ≤ 5 mg/Nm³

Outlet SO_2 emission $\leq 35 \text{ mg/Nm}^3$ (12 ppmv)

PM removal efficiency ≥ 75%

Ammonia recovery ≥ 99%

CAPEX published by CEA

EADS Ammonia FGD

CAPEX:

The cost estimation given below is only indicative in nature and discovered through open competitive bidding for the projects already awarded:

CAPACITY GROUP (MW)	LAKH PER MW #	
210	40.5	
250		
300	39.15	
500	26.45	
525	36.45	
600	33.3	
660		
800	27	
830	27	

NORMS FOR INSTALLATION OF FGD for NEW ENVIRONMENTAL REGULATIONS -7th December-2015 (For Ammonia & Sea Water based FGD)

(FROM 20th March, 2019 ONWARDS)

Limestone FGD

CAPEX:

The cost estimation given below is only indicative in nature and discovered through open competitive bidding for the projects already awarded:

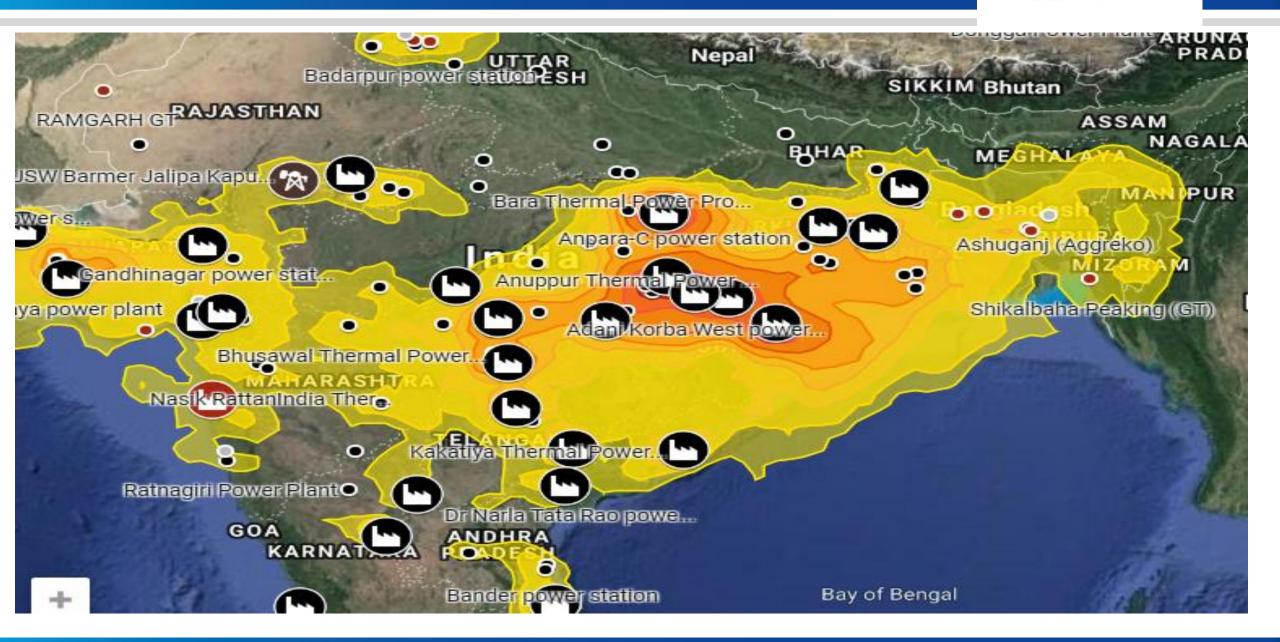
CAPACITY GROUP (MW)	LAKH PER MW #	
210	45	
250		
300	43.5	
500	40.5	
525	40.5	
600	37	
660		
800	30	
830		

The above CAPEX is "Base Cost" only, this base cost is with new chimney and without GGH and does not include Taxes-Duties and Opportunity Cost for interconnection.

NORMS FOR INSTALLATION OF FGD for NEW ENVIRONMENTAL REGULATIONS -7th December-2015

(FROM 21st Februry, 2019 ONWARDS)

From harmful Flue Gas to useful Fertilizer



Thank You....Any Questions?

